[1] S. G. Tong, Y. Y. Huang, Z. M. Tong. A robust face recognition method combining LBP with multi-mirror symmetry for images with various face interferences. International Journal of Automation and Computing, vol. 16, no. 5, pp. 671–682, 2019. DOI:  10.1007/s11633-018-1153-8.
[2] F. K. Zaman, A. A. Shafie, Y. M. Mustafah. Robust face recognition against expressions and partial occlusions. International Journal of Automation and Computing, vol. 13, no. 4, pp. 319–337, 2016. DOI:  10.1007/s11633-016-0974-6.
[3] J. R. Xue, J. W. Fang, P. Zhang. A survey of scene understanding by event reasoning in autonomous driving. International Journal of Automation and Computing, vol. 15, no. 3, pp. 249–266, 2018. DOI:  10.1007/s11633-018-1126-y.
[4] M. Chanvichitkul, P. Kumhom, K. Chamnongthai. Face recognition based dog breed classification using coarse-to-fine concept and PCA. In Proceedings of Asia-Pacific Conference on Communications, IEEE, Bangkok, Thailand, pp. 25–29, 2007.
[5] P. Prasong, K. Chamnongthai. Face-recognition-based dog-breed classification using size and position of each local part, and PCA. In Proceedings of the 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, IEEE, Phetchaburi, Thailand, 2012.
[6] N. Dalal, B. Triggs. Histograms of oriented gradients for human detection. In Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE, San Diego, USA, pp. 886–893, 2005.
[7] D. G. Lowe. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, 2004. DOI:  10.1023/B:VISI.0000029664.99615.94.
[8] O. M. Parkhi, A. Vedaldi, A. Zisserman, C. V. Jawahar. Cats and dogs. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Providence, USA, pp. 3498–3505, 2012.
[9] J. X. Liu, A. Kanazawa, D. Jacobs, P. Belhumeur. Dog breed classification using part localization. In Proceedings of the 12th European Conference on Computer Vision, Springer, Florence, Italy, pp. 172–185, 2002.
[10] K. Lai, X. Y. Tu, S. Yanushkevich. Dog identification using soft biometrics and neural networks. In Proceedings of International Joint Conference on Neural Networks, IEEE, Budapest, Hungary, pp. 1–8, 2019.
[11] X. Y. Tu, K. Lai, S. Yanushkevich. Transfer learning on convolutional neural networks for dog identification. In Proceedings of the 9th IEEE International Conference on Software Engineering and Service Science, IEEE, Beijing, China, pp. 357–360, 2018.
[12] B. Zhao, J. S. Feng, X. Wu, S. C. Yan. A survey on deep learning-based fine-grained object classification and semantic segmentation. International Journal of Automation and Computing, vol. 14, no. 2, pp. 119–135, 2017. DOI:  10.1007/s11633-017-1053-3.
[13] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. A. Ma, Z. H. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, F. F. Li. ImageNet large scale visual recognition challenge. International Journal of Computer Vision, vol. 115, no. 3, pp. 211–252, 2015. DOI:  10.1007/s11263-015-0816-y.
[14] C. Szegedy, V. Vanhoucke, S Ioffe, J. Shlens, Z. Wojna. Rethinking the inception architecture for computer vision. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Las Vegas, USA, pp. 2818–2826, 2016. DOI:  10.1109/CVPR.2016.308.
[15] C. Szegedy, W. Liu, Y. Q. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich. Going deeper with convolutions. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Boston, MA, USA, pp. 1–9, 2015.
[16] M. Sandler, A. Howard, M. L. Zhu, A. Zhmoginov, L. C. Chen. Mobilenetv2: inverted residuals and linear bottlenecks. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Salt Lake City, USA, pp. 4510–4520, 2018.
[17] B. Zoph, V. Vasudevan, J. Shlens, Q. V. Le. Learning transferable architectures for scalable image recognition. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Salt Lake City, USA, pp. 8697–8710, 2018. DOI:  10.1109/CVPR.2018.00907.
[18] J. Yosinski, J. Clune, Y. Bengio, H. Lipson. How transferable are features in deep neural networks? In Proceedings of the 27th International Conference on Neural Information Processing Systems, MIT Press, Montreal, Canada, pp. 3320–3328, 2014.
[19] L. Shao, F. Zhu, X. L. Li. Transfer learning for visual categorization: a survey. IEEE Transactions on Neural Networks and Learning Systems, vol. 26, no. 5, pp. 1019–1034, 2015. DOI:  10.1109/TNNLS.2014.2330900.
[20] J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, F. F. Li. ImageNet: a large-scale hierarchical image database. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Miami, USA, pp. 248–255, 2009.
[21] T. Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollar, C. L. Zitnick. Microsoft coco: common objects in context. In Proceedings of the 13th European Conference on Computer Vision, Springer, Zurich, Switzerland, pp. 740–755, 2014.
[22] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, vol. 15, pp. 1929–1958, 2014.
[23] K. Weiss, T. M. Khoshgoftaar, D. D. Wang. A survey of transfer learning. Journal of Big Data, vol. 3, no. 1, Article number 9, 2016. DOI:  10.1186/s40537-016-0043-6.
[24] A. R. Zamir, A. Sax, W. Shen, L. Guibas, J. Malik, S. Savarese. Taskonomy: disentangling task transfer learning. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Salt Lake City, USA, pp. 3712–3722, 2018.
[25] S. Ioffe, C. Szegedy. Batch normalization: accelerating deep network training by reducing internal covariate shift. In Proceedings of the 32nd International Conference on Machine Learning, Lille, France, pp. 448–456, 2015.
[26] C. Shorten, T. M. Khoshgoftaar. A survey on image data augmentation for deep learning. Journal of Big Data, vol. 6, no. 1, Article number 60, 2019.
[27] L. Perez, J. Wang. The effectiveness of data augmentation in image classification using deep learning. [online], Available: https://arxiv.orglabs/1712.04621, 2017.
[28] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio. Generative adversarial nets. In Proceedings of the 27th International Conference on Neural Information Processing Systems, Montreal, Canada, pp. 2672–2680, 2014.
[29] A. Khosla, N. Jayadevaprakash, B. P. Yao, F. F. Li. Novel dataset for fine-grained image categorization: Stanford dogs. In Proceedings of the 1st Workshop on Fine-Grained Visual Categorization, IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Colorado Springs, USA, 2011.