[1] D. McNeill. The Face: A Natural History, New York, USA: Back Bay Books, 2000.
[2] A. Todorov, C. P. Said, A. D. Engell, N. N. Oosterhof. Understanding evaluation of faces on social dimensions. Trends in Cognitive Sciences, vol. 12, no. 12, pp. 455-460, 2008. doi:  10.1016/j.tics.2008.10.001
[3] C. C. Ballew Ⅱ, A. Todorov. Predicting political elections from rapid and unreflective face judgments. Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 46, pp. 17948-17953, 2007. doi:  10.1073/pnas.0705435104
[4] A. C. Little, R. P. Burriss, B. C. Jones, S. C. Roberts. Facial appearance affects voting decisions. Evolution and Human Behavior, vol. 28, no. 1, pp. 18-27, 2007. doi:  10.1016/j.evolhumbehav.2006.09.002
[5] I. V. Blair, C. M. Judd, K. M. Chapleau. The influence of afrocentric facial features in criminal sentencing. Psychological Science, vol. 15, no. 10, pp. 674-679, 2004. doi:  10.1111/j.0956-7976.2004.00739.x
[6] D. R. Carney, C. R. Colvin, J. A. Hall. A thin slice perspective on the accuracy of first impressions. Journal of Research in Personality, vol. 41, no. 5, pp. 1054-1072, 2007. doi:  10.1016/j.jrp.2007.01.004
[7] R. S. S. Kramer, J. E. King, R. Ward. Identifying personality from the static, nonexpressive face in humans and chimpanzees:Evidence of a shared system for signaling personality. Evolution and Human Behavior, vol. 32, no. 3, pp. 179-185, 2011. doi:  10.1016/j.evolhumbehav.2010.10.005
[8] Q. M. Rojas, D. Masip, A. Todorov, J. Vitriä. Automatic point-based facial trait judgments evaluation. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, IEEE, San Francisco, USA, pp. 2715-2720, 2010. https://www.researchgate.net/publication/221363797_Automatic_point-based_facial_trait_judgments_evaluation
[9] Q. M. Rojas, D. Masip, A. Todorov, J. Vitria. Automatic prediction of facial trait judgments:Appearance vs. structural models. PLoS One, vol. 6, no. 8, Article number e23323, 2011. doi:  10.1371/journal.pone.0023323
[10] K. Wolffhechel, J. Fagertun, U. P. Jacobsen, W. Majewski, A. S. Hemmingsen, C. L. Larsen, S. K. Lorentzen, H. Jarmer. Interpretation of appearance:The effect of facial features on first impressions and personality. PLoS One, vol. 9, no. 9, Article number e107721, 2014. doi:  10.1371/journal.pone.0107721
[11] K. Kleisner, V. Chvátalová, J. Flegr. Perceived intelligence is associated with measured intelligence in men but not women. PLoS One, vol. 9, no. 3, Article number e81237, 2014. doi:  10.1371/journal.pone.0081237
[12] J. Yosinski, J. Clune, Y. Bengio, H. Lipson. How transferable are features in deep neural networks? In Proceedings of the 27th International Conference on Neural Information Processing Systems, NIPS, Montréal, Canada, pp. 3320-3328, 2014.
[13] M. S. Long, Y. Cao, J. M. Wang, M. I. Jordan. Learning transferable features with deep adaptation networks. In Proceedings of the 32nd International Conference on Machine Learning, JMLR, Lille, France, 2015.
[14] O. M. Parkhi, A. Vedaldi, A. Zisserman. Deep face recognition. In Proceedings of British Machine Vision Conference, Swansea, UK, vol. 41, pp. 1-12, 2015.
[15] G. B. Huang, M. Ramesh, T. Berg, E. Learned-Miller. Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical Report 07-49, University of Massachusetts, USA, 2007.
[16] Y. Taigman, M. Yang, M. A. Ranzato, L. Wolf. Deepface:Closing the gap to human-level performance in face verification. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Columbus, USA, pp. 1701-1708, 2014. https://www.researchgate.net/publication/263564119_DeepFace_Closing_the_Gap_to_Human-Level_Performance_in_Face_Verification
[17] Y. Sun, X. G. Wang, X. O. Tang. Deep learning face representation from predicting 10, 000 classes. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Columbus, USA, pp. 1891-1898, 2014. doi:  10.1109/CVPR.2014.244
[18] Z. Y. Zhu, P. Luo, X. G. Wang, X. O. Tang. Deep learning identity-preserving face space. In Proceedings of IEEE International Conference on Computer Vision, IEEE, Sydney, Australia, pp. 113-120, 2013. https://www.computer.org/csdl/proceedings/iccv/2013/2840/00/2840a113.pdf
[19] Y. Sun, Y. H. Chen, X. G. Wang, X. O. Tang. Deep learning face representation by joint identification-verification. In Proceedings of the 27th International Conference on Neural Information Processing Systems, NIPS, Montréal, Canada, pp. 1988-1996, 2014. https://www.researchgate.net/publication/263237688_Deep_Learning_Face_Representation_by_Joint_Identification-Verification
[20] Y. Taigman, M. Yang, M. A. Ranzato, L. Wolf. Webscale training for face identification. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Boston, USA, pp. 2746-2754, 2015. https://www.researchgate.net/publication/263316209_Web-Scale_Training_for_Face_Identification
[21] T. Zhang, Q. L. Dong, Z. Y. Hu. Pursuing face identity from view-specific representation to view-invariant representation. In Proceedings of IEEE International Conference on Image Processing, IEEE, Phoenix, USA, pp. 3244-3248, 2016. https://www.researchgate.net/publication/307516199_Pursuing_face_identity_from_view-specific_representation_to_view-invariant_representation
[22] B. Zhao, J. S. Feng, X. Wu, S. C. Yan. A survey on deep learning-based fine-grained object classification and semantic segmentation. International Journal of Automation and Computing, vol. 14, no. 2, pp. 1-17, 2017. http://www.ijac.net/EN/abstract/abstract1901.shtml
[23] N. Kumar, A. C. Berg, P. N. Belhumeur, S. K. Nayar. Attribute and simile classifiers for face verification. In Proceedings of IEEE International Conference on Computer Vision, IEEE, Kyoto, Japan, pp. 365-372, 2009. http://ieeexplore.ieee.org/document/5459250/
[24] Y. Taigman, L. Wolf, T. Hassner. Multiple one-shots for utilizing class label information. In Proceedings of British Machine Vision Conference, London, UK, vol. 2, pp. 1-12, 2009. https://www.researchgate.net/publication/221259463_Multiple_One-Shots_for_Utilizing_Class_Label_Information
[25] M. Guillaumin, J. Verbeek, C. Schmid. Is that you? Metric learning approaches for face identification. In Proceedings of IEEE International Conference on Computer Vision, IEEE, Kyoto, Japan, pp. 498-505, 2009. https://www.researchgate.net/publication/224135938_Is_that_you_Metric_Learning_Approaches_for_Face_Identification
[26] Q. Yin, X. O. Tang, J. Sun. An associate-predict model for face recognition. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Colorado Springs, USA, pp. 497-504, 2011. https://www.researchgate.net/publication/221363082_An_associate-predict_model_for_face_recognition
[27] C. Huang, S. H. Zhu, K. Yu. Large scale strongly supervised ensemble metric learning, with applications to face verification and retrieval. arXiv: 1212. 6094, 2012.
[28] D. Chen, X. D. Cao, L. W. Wang, F. Wen, J. Sun. Bayesian face revisited:A joint formulation. In Proceedings of the 12th European Conference on Computer Vision, Florence, Italy, pp. 566-579, 2012. https://www.researchgate.net/publication/262294970_Bayesian_Face_Revisited_A_Joint_Formulation
[29] T. Berg, P. N. Belhumeur. Tom-vs-pete classifiers and identity-preserving alignment for face verification. In Proceedings of British Machine Vision Conference, Guildford, UK, vol. 129, pp. 1-11, 2012. https://www.researchgate.net/publication/266341964_Tom-vs-Pete_Classifiers_and_Identity-Preserving_Alignment_for_Face_Verification
[30] D. Chen, X. D. Cao, F. Wen, J. Sun. Blessing of dimensionality:High-dimensional feature and its efficient compression for face verification. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Portland, USA, pp. 3025-3032, 2013. https://www.researchgate.net/publication/261236790_Blessing_of_Dimensionality_High-Dimensional_Feature_and_Its_Efficient_Compression_for_Face_Verification
[31] X. D. Cao, D. Wipf, F. Wen, G. Q. Duan, J. Sun. A practical transfer learning algorithm for face verification. In Proceedings of IEEE International Conference on Computer Vision, IEEE, Barcelona, Spain, pp. 3208-3215, 2013. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.664.2762
[32] F. K. Zaman, A. A. Shafie, Y. M. Mustafah. Robust face recognition against expressions and partial occlusions. International Journal of Automation and Computing, vol. 13, no. 4, pp. 319-337, 2016. doi:  10.1007/s11633-016-0974-6
[33] N. N. Oosterhof, A. Todorov. The functional basis of face evaluation. Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 32, pp. 11087-11092, 2008. doi:  10.1073/pnas.0805664105
[34] S. Karson. A Guide to the Clinical Use of the 16 pf, Savoy, USA: Institute for Personality and Ability Testing, 1976.
[35] R. M. Kaplan, D. P. Saccuzzo. Psychological Testing: Principles, Applications, and Issues, Boston, USA: Wadsworth Publishing, 2012.
[36] R. Z. Qin, T. Zhang. Shape initialization without ground truth for face alignment. In Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, IEEE, Shanghai, China, pp. 1278-1282, 2016. https://www.researchgate.net/publication/304360899_Shape_initialization_without_ground_truth_for_face_alignment
[37] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, T. Darrell. Caffe: Convolutional architecture for fast feature embedding. In Proceedings of ACM International Conference on Multimedia, ACM, Orlando, USA, 2014.
[38] N. Dalal, B. Triggs. Histograms of oriented gradients for human detection. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, IEEE, San Diego, USA, pp. 886-893, 2005. https://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf
[39] T. Ahonen, A. Hadid, M. Pietikainen. Face description with local binary patterns:Application to face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 12, pp. 2037-2041, 2006. doi:  10.1109/TPAMI.2006.244
[40] C. J. Liu, H. Wechsler. Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition. IEEE Transactions on Image Processing, vol. 11, no. 4, pp. 467-476, 2002. doi:  10.1109/TIP.2002.999679
[41] D. G. Lowe. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, vol. 60, no. 2, pp. 91-110, 2004. doi:  10.1023/B:VISI.0000029664.99615.94
[42] A. Oliva, A. Torralba. Modeling the shape of the scene:A holistic representation of the spatial envelope. International Journal of Computer Vision, vol. 42, no. 3, pp. 145-175, 2001. doi:  10.1023/A:1011139631724