[1]
|
A. Isidori. Nonlinear Control Systems, Berlin, Germany: Springer Verlag, 1995. |
[2]
|
W. Perruquetti, J. P. Barbot. Sliding Mode Control in En-gineering, FL, USA: CRC Press, 2002. |
[3]
|
J. A. Burton, A. S. I. Zinober. Continuous approximation of variable structure control. International Journal of Systems Science, vol. 17, no. 6, pp. 875-885, 1986. |
[4]
|
H. Lee, V. I. Utkin. Chattering suppression methods in sliding mode control systems. Annual Reviews in Control, vol. 31, no. 2, pp. 179-188, 2007. |
[5]
|
K. C. Veluvolu, Y. C. Soh, W. Cao. Robust observer with sliding mode estimation for nonlinear uncertain systems. IET Control Theory Applications, vol. 1, no. 5, pp. 1533-1540, 2007. |
[6]
|
A. Levant. Higher-order sliding modes, differentiation and output-feedback control. International Journal of Control, vol. 76, no. 9, pp. 924-941, 2003. |
[7]
|
A. Levant. Chattering analysis. IEEE Transactions on Au-tomatic Control, vol. 55, no. 6, pp. 1380-1389, 2010. |
[8]
|
J. A. Moreno, M. Osorio. Strict Lyapunov functions for the super twisting algorithm. IEEE Transactions on Automatic Control, vol. 57, no. 4, pp. 1035-1040, 2012. |
[9]
|
I. Nagesha, C. Edwardsb. A multivariable super-twisting sliding mode approach. Automatica, vol. 50, no. 3, pp. 984-988, 2014. |
[10]
|
I. Fantoni, R. Lozano. Non-linear Control for Underactu-ated Mechanical Systems, London, UK: Springer, pp. 21-42, 2002. |
[11]
|
B. Jakubczyk, W. Respondek. On the linearization of con-trol systems. Bult. Acad. Polon. Sei. Math., vol. 28, pp. 517-522, 1980. |
[12]
|
J. Zhao, M. W. Spong. Hybrid control for global stabi-lization of the cart pendulum system. Automatica, vol. 37, no. 12, pp. 1941-1951, 2001. |
[13]
|
W. D. Chang, R. Hwang, J. G. Chsieh. A self-tuning PID control for a class of nonlinear systems based on the Lya-punov approach. Journal of Process Control, vol. 12, no. 2, pp. 233-242, 2002. |
[14]
|
D. Voytsekhovsky, R. M. Hirschorn. Stabilization of single-input nonlinear systems using higher-order term compen-sating sliding mode control. International Journal of Robust and Nonlinear Control, vol. 18, no. 4-5, pp. 468-480, 2008. |
[15]
|
C. Aguilar, R. Hirschorn. Stabilization of an Inverted Pen-dulum, Report on Summer Natural Sciences and Engineer-ing Research Council of Canada, Research Project, Queens University at Kingston, Department of Mathematics and Statistics, 2003. |
[16]
|
S. V. Emel'yanov, S. V. Korovin, L. V. Levantovsky. Higher-order sliding modes in control systems. Differential Equations, vol. 29, no. 11, pp. 1627-1647, 1993. |