Nacer Hacene, Boubekeur Mendil. Behavior-based Autonomous Navigation and Formation Control of Mobile Robots in Unknown Cluttered Dynamic Environments with Dynamic Target Tracking. International Journal of Automation and Computing, vol. 18, no. 5, pp.766-786, 2021.
Citation: Nacer Hacene, Boubekeur Mendil. Behavior-based Autonomous Navigation and Formation Control of Mobile Robots in Unknown Cluttered Dynamic Environments with Dynamic Target Tracking. International Journal of Automation and Computing, vol. 18, no. 5, pp.766-786, 2021.

Behavior-based Autonomous Navigation and Formation Control of Mobile Robots in Unknown Cluttered Dynamic Environments with Dynamic Target Tracking

doi: 10.1007/s11633-020-1264-x
More Information
  • Author Bio:

    Nacer Hacene received the B. Eng. degree in automatic control from University of Mohamed Khider, Algeria in 2010, the M. Eng. and Ph. D. degrees in automatic control and signal processing from University of Abderrahmane Mira, Algeria in 2014 and 2019, respectively. He is with Laboratory of Industrial Technology and Information (LITI), University of Bejaia, Algeria. He is currently an associate professor with Department of Automatics and Electromechanics, Ghardaia University, Algeria. His research interests include mobile robot control, artificial intelligence, metaheuristics and swarm robotics.E-mail: (Corresponding author)ORCID iD: 0000-0002-8586-4590

    Boubekeur Mendil received the B. Eng., M. Eng. and Ph. D. degrees in industrial control from Setif University, Algeria in 1991, 1994 and 2002, respectively. Currently, he is a professor of robotics and automatic control with the Electrical Engineering Department, Abderrahmane Mira University, Algeria. He is the head of the Soft-computing Research Group, LTII Laboratory, at the same University, Algeria. His research interests include mobile robots, soft-computing, and motion control.E-mail:

  • Received Date: 2020-01-17
  • Accepted Date: 2020-10-19
  • Publish Online: 2021-03-01
  • Publish Date: 2021-10-01
  • While different species in nature have safely solved the problem of navigation in a dynamic environment, this remains a challenging task for researchers around the world. The paper addresses the problem of autonomous navigation in an unknown dynamic environment for a single and a group of three wheeled omnidirectional mobile robots (TWOMRs). The robot has to track a dynamic target while avoiding dynamic obstacles and dynamic walls in an unknown and very dense environment. It adopts a behavior-based controller that consists of four behaviors: “target tracking”, “obstacle avoidance”, “dynamic wall following” and “avoid robots”. The paper considers the problem of kinematic saturation. In addition, it introduces a strategy for predicting the velocity of dynamic obstacles based on two successive measurements of the ultrasonic sensors to calculate the velocity of the obstacle expressed in the sensor frame. Furthermore, the paper proposes a strategy to deal with dynamic walls even when they have U-like or V-like shapes. The approach can also deal with the formation control of a group of robots based on the leader-follower structure and the behavior-based control, where the robots have to get together and maintain a given formation while navigating toward the target, avoiding obstacles and walls in a dynamic environment. The effectiveness of the proposed approaches is demonstrated via simulation.


  • loading
  • [1]
    T. Dash. Automatic navigation of wall following mobile robot using adaptive resonance theory of type-1. Biologically Inspired Cognitive Architectures, vol. 12, 2015. DOI: 10.1016/j.bica.2015.04.008.
    M. Panda, B. Das, B. Subudhi, B. B. Pati. A comprehensive review of path planning algorithms for autonomous underwater vehicles. International Journal of Automation and Computing, vol. 17, no. 3, pp. 321–352, 2020. DOI: 10.1007/s11633-019-1204-9.
    Y. Zhu, T. Zhang, J. Y. Song, X. Q. Li. A hybrid navigation strategy for multiple mobile robots. Robotics and Computer-Integrated Manufacturing, vol. 29, no. 4, pp. 129–141, 2013. DOI: 10.1016/j.rcim.2012.11.007.
    M. Algabri, H. Mathkour, H. Ramdane, M. Alsulaiman. Comparative study of soft computing techniques for mobile robot navigation in an unknown environment. Computers in Human Behavior, vol. 50, pp. 42–56, 2015. DOI: 10.1016/j.chb.2015.03.062.
    O. Motlagh, S. H. Tang, N. Ismail, A. R. Ramli. An expert fuzzy cognitive map for reactive navigation of mobile robots. Fuzzy Sets and Systems, vol. 201, pp. 105–121, 2012. DOI: 10.1016/j.fss.2011.12.013.
    A. Petrovskaya, O. Khatib. Global localization of objects via touch. IEEE Transactions on Robotics, vol. 27, no. 3, pp. 569–585, 2011. DOI: 10.1109/TRO.2011.2138450.
    O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots. The International Journal of Robotics Research, vol. 5, no. 1, pp. 90–98, 1986. DOI: 10.1177/027836498600500106.
    A. N. Ouda, A. Mohamed, M. EI-Gindy, H. X. Lang, J. Ren. Development and modeling of remotely operated scaled multi-wheeled combat vehicle using system identification. International Journal of Automation and Computing, vol. 16, no. 3, pp. 261–273, 2019. DOI: 10.1007/s11633-018-1161-8.
    K. Al-Mutib, E. Mattar, M. Alsulaiman. Implementation of fuzzy decision based mobile robot navigation using stereo vision. Procedia Computer Science, vol. 62, pp. 143–150, 2015. DOI: 10.1016/j.procs.2015.08.427.
    B. Hu, J. C. Wang. Deep learning based hand gesture recognition and UAV flight controls. International Journal of Automation and Computing, vol. 17, no. 1, pp. 17–29, 2020. DOI: 10.1007/s11633-019-1194-7.
    M. Beyeler, N. Oros, N. Dutt, J. L. Krichmar. A GPU-accelerated cortical neural network model for visually guided robot navigation. Neural Networks, vol. 72, pp. 75–87, 2015. DOI: 10.1016/j.neunet.2015.09.005.
    X. Q. Wang, Z. G. Hou, F. Lv, M. Tan, Y. J. Wang. Mobile robots′ modular navigation controller using spiking neural networks. Neurocomputing, vol. 134, pp. 230–238, 2014. DOI: 10.1016/j.neucom.2013.07.055.
    S. Kundu, D. R. Parhi. Reactive navigation of underwater mobile robot using ANFIS approach in a manifold manner. International Journal of Automation and Computing, vol. 14, no. 3, pp. 307–320, 2017. DOI: 10.1007/s11633-016-0983-5.
    A. M. Rao, K. Ramji, B. S. K. Sundara Siva Rao, V. Vasu, C. Puneeth. navigation of non-holonomic mobile robot using neuro-fuzzy logic with integrated safe boundary algorithm. International Journal of Automation and Computing, vol. 14, no. 3, pp. 285–294, 2017. DOI: 10.1007/s11633-016-1042-y.
    Y. L. Chen, J. Cheng, C. Lin, X. Y. Wu, Y. S. Ou, Y. S. Xu. Classification-based learning by particle swarm optimization for wall-following robot navigation. Neurocomputing, vol. 113, pp. 27–35, 2013. DOI: 10.1016/j.neucom.2012.12.037.
    M. A. P. Garcia, O. Montiel, O. Castillo, R. Sepulveda, P. Melin. Path planning for autonomous mobile robot navigation with ant colony optimization and fuzzy cost function evaluation. Applied Soft Computing, vol. 9, no. 3, pp. 1102–1110, 2009. DOI: 10.1016/j.asoc.2009.02.014.
    A. Babinec, F. Duchoň, M. Dekan, P. Pásztó, M. Kelemen. VFH*TDT (VFH* with time dependent tree): A new laser based obstacle avoidance method designed for environment with non-static obstacles. Robotics and Autonomous Systems, vol. 62, pp. 1098–1115, 2014. DOI: 10.1016/j.robot.2014.05.003.
    I. Ulrich, J. Borenstein. VFH+: Reliable obstacle avoidance for fast mobile robots. In Proceedings of IEEE International Conference on Robotics and Automation, Leuven, Belgium, pp. 1572−1577, 1998.
    I. Ulrich, J. Borenstein. VFH*: Local obstacle avoidance with look-ahead verification. In Proceedings of IEEE International Conference on Robotics and Automation, San Francisco, USA, pp. 2505−2511, 2000.
    B. Li, C. Xu, K. L. Teo, J. Chu. Time optimal Zermelo′s navigation problem with moving and fixed obstacles. Applied Mathematics and Computation, vol. 224, pp. 866–875, 2013. DOI: 10.1016/j.amc.2013.08.092.
    M. A. K. Jaradat, M. Al-Rousan, L. Quadan. Reinforcement based mobile robot navigation in dynamic environment. Robotics and Computer-Integrated Manufacturing, vol. 27, no. 1, pp. 135–149, 2011. DOI: 10.1016/j.rcim.2010.06.019.
    A. S. Matveev, M. C. Hoy, A. V. Savkin. A globally converging algorithm for reactive robot navigation among moving and deforming obstacles. Automatica, vol. 54, pp. 292–304, 2015. DOI: 10.1016/j.automatica.2015.02.012.
    Y. N. Wang, Y. M. Yang, X. F. Yuan, Y. Zuo, Y. L. Zhou, F. Yin, L. Tan. Autonomous mobile robot navigation system designed in dynamic environment based on transferable belief model. Measurement, vol. 44, no. 8, pp. 1389–1405, 2011. DOI: 10.1016/j.measurement.2011.05.010.
    X. Y. Zhong, X. G. Zhong, X. F. Peng. Velocity-Change-Space-based dynamic motion planning for mobile robots navigation. Neurocomputing, vol. 143, pp. 153–163, 2014. DOI: 10.1016/j.neucom.2014.06.010.
    A. V. Savkin, C. Wang. Seeking a path through the crowd: Robot navigation in unknown dynamic environments with moving obstacles based on an integrated environment representation. Robotics and Autonomous Systems, vol. 62, no. 10, pp. 1568–1580, 2014. DOI: 10.1016/j.robot.2014.05.006.
    O. Montiel, U. Orozco-Rosas, R. Sepúlveda. Path planning for mobile robots using bacterial potential field for avoiding static and dynamic obstacles. Expert Systems with Applications, vol. 42, no. 12, pp. 5177–5191, 2015. DOI: 10.1016/j.eswa.2015.02.033.
    Z. H. Li, Z. W. Wu, Y. L. Fu. Dynamic obstacle avoidance of mobile robot tele-operation based on non-contact impedance control. In Proceedings of the 11th World Congress on Intelligent Control and Automation, IEEE, Shenyang, China, pp. 1421−1426, 2014.
    K. Kanjanawanishkul. Formation control of mobile robots: Survey. Academic Journal Engineering, vol. 4, no. 1, pp. 50–64, 2011.
    I. Navarro, F. Matía. A survey of collective movement of mobile robots. International Journal of Advanced Robotic Systems, vol. 10, no. 1, 2013. DOI: 10.5772/54600.
    M. J. Mataric. Designing emergent behaviors: From local interactions to collective intelligence. In Proceedings of the 2nd International Conference on from Animals to Animats 2: Simulation of Adaptive Behavior: Simulation of Adaptive Behavior, Honolulu, USA, pp. 432−441, 1992.
    H. Rezaee, F. Abdollahi. A decentralized cooperative control scheme with obstacle avoidance for a team of mobile robots. IEEE Transactions on Industrial Electronics, vol. 61, no. 1, pp. 347–354, 2014. DOI: 10.1109/TIE.2013.2245612.
    D. D. Xu, X. N. Zhang, Z. Q. Zhu, C. L. Chen, P. Yang. Behavior-based formation control of swarm robots. Mathematical Problems in Engineering, vol. 2014, Article number 205759, 2014.
    Y. C. Liu, R. Bucknall. A survey of formation control and motion planning of multiple unmanned vehicles. Robotica, vol. 36, no. 7, pp. 1019–1047, 2018. DOI: 10.1017/S0263574718000218.
    J. Vilca, L. Adouane, Y. Mezouar. Adaptive leader-follower formation in cluttered environment using dynamic target reconfiguration. In Proceedings of the 12th International Symposium, Springer, Tokyo, Japan, pp. 237−254, 2016.
    K. Raghuwaiya, B. Sharma, J. Vanualailai. Leader-follower based locally rigid formation control. Journal of Advanced Transportation, vol. 2018, Article number 5278565, 2018.
    G. Lee, D. Chwa. Decentralized behavior-based formation control of multiple robots considering obstacle avoidance. Intelligent Service Robotics, vol. 11, no. 1, pp. 127–138, 2018. DOI: 10.1007/s11370-017-0240-y.
    H. S. Kim, J. K. Park, T. Y. Kuc, N. Y. Ko, Y. S. Moon. A formation and traction control design for multiple mobile robots. International Journal of Control,Automation and Systems, vol. 15, no. 3, pp. 1287–1301, 2017. DOI: 10.1007/s12555-016-0025-7.
    M. Khaledyan, M. de Queiroz. A formation maneuvering controller for multiple non-holonomic robotic vehicles. Robotica, vol. 37, no. 1, pp. 189–211, 2018. DOI: 10.1017/S0263574718000942.
    M. A. Lewis, K. H. Tan. High precision formation control of mobile robots using virtual structures. Autonomous Robots, vol. 4, no. 4, pp. 387–403, 1997. DOI: 10.1023/A:1008814708459.
    L. E. Parker. Adaptive action selection for cooperative agent teams. In Proceedings of the 2nd International Conference on Simulation of Adaptive Behavior, J. A. Meyer, H. Roitblat, S. Wilson, Eds., Cambridge, UK: MIT Press, pp. 442−445, 1992.
    L. E. Parker. Designing control laws for cooperative agent teams. In Proceedings of IEEE International Conference on Robotics and Automation, Atlanta, USA, pp. 582−587, 1993.
    L. E. Parker. An experiment in mobile robotic cooperation. In Proceedings of ASCE Specialty Conference on Robotics for Challenging Environments, Albuquerque, USA, pp. 131−139, 1994.
    N. Hacene, B. Mendil. Motion analysis and control of three-wheeled omnidirectional mobile robot. Journal of Control,Automation and Electrical Systems, vol. 30, no. 2, pp. 194–213, 2019. DOI: 10.1007/s40313-019-00439-0.
    N. Hacene, B. Mendil. Fuzzy behavior-based control of three wheeled omnidirectional mobile robot. International Journal of Automation and Computing, vol. 16, no. 2, pp. 163–185, 2019. DOI: 10.1007/s11633-018-1135-x.
    J. J. Craig. Introduction to Robotics: Mechanics and Control, 3rd ed., New York, USA: Pearson Education, Inc., 2005.
    R. A. Brooks. A Robust Layered Control System for A Mobile Robot, Technical Report AIM 864, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, USA, pp. 1−25, 1985.
    C. C. Tsai, H. L. Wu, F. C. Tai, Y. S. Chen. Distributed consensus formation control with collision and obstacle avoidance for uncertain networked omnidirectional multi-robot systems using fuzzy wavelet neural networks. International Journal of Fuzzy Systems, vol. 19, no. 5, pp. 1375–1391, 2017. DOI: 10.1007/s40815-016-0239-0.
  • 加载中


    通讯作者: 陈斌,
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (94) PDF downloads(48) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint