Display Method:      

Research Article
Automatic “Ground Truth” Annotation and Industrial Workpiece Dataset Generation for Deep Learning
Fu-Qiang Liu, Zong-Yi Wang
Available online   doi: 10.1007/s11633-020-1221-8
Abstract PDF SpringerLink
Abstract:
In industry, it is becoming common to detect and recognize industrial workpieces using deep learning methods. In this field, the lack of datasets is a big problem, and collecting and annotating datasets in this field is very labor intensive. The researchers need to perform dataset annotation if a dataset is generated by themselves. It is also one of the restrictive factors that the current method based on deep learning cannot expand well. At present, there are very few workpiece datasets for industrial fields, and the existing datasets are generated from ideal workpiece computer aided design (CAD) models, for which few actual workpiece images were collected and utilized. We propose an automatic industrial workpiece dataset generation method and an automatic ground truth annotation method. Included in our methods are three algorithms that we proposed: a point cloud based spatial plane segmentation algorithm to segment the workpieces in the real scene and to obtain the annotation information of the workpieces in the images captured in the real scene; a random multiple workpiece generation algorithm to generate abundant composition datasets with random rotation workpiece angles and positions; and a tangent vector based contour tracking and completion algorithm to get improved contour images. With our procedures, annotation information can be obtained using the algorithms proposed in this paper. Upon completion of the annotation process, a json format file is generated. Faster R-CNN (Faster R-convolutional neural network), SSD (single shot multibox detector) and YOLO (you only look once: unified, real-time object detection) are trained using the datasets proposed in this paper. The experimental results show the effectiveness and integrity of this dataset generation and annotation method.
Automatic Classification of Cardiac Arrhythmias Based on Hybrid Features and Decision Tree Algorithm
Santanu Sahoo, Asit Subudhi, Manasa Dash, Sukanta Sabut
Available online   doi: 10.1007/s11633-019-1219-2
Abstract PDF SpringerLink
Abstract:
Accurate classification of cardiac arrhythmias is a crucial task because of the non-stationary nature of electrocardiogram (ECG) signals. In a life-threatening situation, an automated system is necessary for early detection of beat abnormalities in order to reduce the mortality rate. In this paper, we propose an automatic classification system of ECG beats based on the multi-domain features derived from the ECG signals. The experimental study was evaluated on ECG signals obtained from the MIT-BIH Arrhythmia Database. The feature set comprises eight empirical mode decomposition (EMD) based features, three features from variational mode decomposition (VMD) and four features from RR intervals. In total, 15 features are ranked according to a ranker search approach and then used as input to the support vector machine (SVM) and C4.5 decision tree classifiers for classifying six types of arrhythmia beats. The proposed method achieved best result in C4.5 decision tree classier with an accuracy of 98.89% compared to cubic-SVM classifier which achieved an accuracy of 95.35% only. Besides accuracy measures, all other parameters such as sensitivity (Se), specificity (Sp) and precision rates of 95.68%, 99.28% and 95.8% was achieved better in C4.5 classifier. Also the computational time of 0.65 s with an error rate of 0.11 was achieved which is very less compared to SVM. The multi-domain based features with decision tree classifier obtained the best results in classifying cardiac arrhythmias hence the system could be used efficiently in clinical practices.
Remote Sensing Image Registration Based on Improved KAZE and BRIEF Descriptor
Huan Liu, Gen-Fu Xiao
Available online   doi: 10.1007/s11633-019-1218-3
Abstract PDF SpringerLink
Abstract:
Remote sensing image registration is still a challenging task owing to the significant influence of nonlinear differences between remote sensing images. To solve this problem, this paper proposes a novel approach with regard to feature-based remote sensing image registration. There are two key contributions: 1) we bring forward an improved strategy of composite nonlinear diffusion filtering according to the scale factors in multi-scale space and 2) we design a gradually decreasing resolution of multi-scale pyramid space. And a binary code string is served as feature descriptors to improve matching efficiency. Extensive experiments of different categories of remote image datasets on feature extraction and feature registration are performed. The experimental results demonstrate the superiority of our proposed scheme compared with other classical algorithms in terms of correct matching ratio, accuracy and computation efficiency.
Kinematic Analysis of an Under-actuated, Closed-loop Front-end Assembly of a Dragline Manipulator
Muhammad A. Wardeh, Samuel Frimpong
Available online   doi: 10.1007/s11633-019-1217-4
Abstract PDF SpringerLink
Abstract:
Dragline excavators are closed-loop mining manipulators that operate using a rigid multilink framework and rope and rigging system, which constitute its front-end assembly. The arrangements of dragline front-end assembly provide the necessary motion of the dragline bucket within its operating radius. The assembly resembles a five-link closed kinematic chain that has two independent generalized coordinates of drag and hoist ropes and one dependent generalized coordinate of dump rope. Previous models failed to represent the actual closed loop of dragline front-end assembly, nor did they describe the maneuverability of dragline ropes under imposed geometric constraints. Therefore, a three degrees of freedom kinematic model of the dragline front-end is developed using the concept of generalized speeds. It contains all relevant configuration and kinematic constraint conditions to perform complete digging and swinging cycles. The model also uses three inputs of hoist and drag ropes linear and a rotational displacement of swinging along their trajectories. The inverse kinematics is resolved using a feedforward displacement algorithm coupled with the Newton-Raphson method to accurately estimate the trajectories of the ropes. The trajectories are solved only during the digging phase and the singularity was eliminated using Baumgarte′s stabilization technique (BST), with appropriate inequality constraint equations. It is shown that the feedforward displacement algorithm can produce accurate trajectories without the need to manually solve the inverse kinematics from the geometry. The research findings are well in agreement with the dragline real operational limits and they contribute to the efficiency and the reduction in machine downtime due to better control strategies of the dragline cycles.
Item Ownership Relationship Semantic Learning Strategy for Personalized Service Robot
Hao Wu, Zhao-Wei Chen, Guo-Hui Tian, Qing Ma, Meng-Lin Jiao
Available online   doi: 10.1007/s11633-019-1206-7
Abstract PDF SpringerLink
Abstract:
In order to satisfy the robotic personalized service requirements that can select exclusive items to perform inference and planning according to different service individuals, the service robots need to have the ability to independently obtain the ownership relationship between humans and their carrying items. In this work, we present a novel semantic learning strategy for item ownership. Firstly, a human-carrying-items detection network based on human posture estimation and object detection model is used. Then, the transferred convolutional neural network is used to extract the characteristics of the objects and the back-end classifier to recognize the object instance. At the same time, the face detection and recognition model are used to identify the service individual. Finally, on the basis of the former two, the active learning of ownership items is completed. The experimental results show that the proposed ownership semantic learning strategy can determine the ownership relationship of private goods accurately and efficiently. The solution of this problem can improve the intelligence level of robot life service.
Performance Improvement of Discrete-time Linear Control Systems Subject to Varying Sampling Rates Using the Tikhonov Regularization Method
Fernando Agustín Pazos, Anibal Zanini, Amit Bhaya
Available online   doi: 10.1007/s11633-019-1205-8
Abstract PDF SpringerLink
Abstract:
Methods to stabilize discrete-time linear control systems subject to variable sampling rates, i.e., using state feedback controllers, are well known in the literature. Several recent works address the use of the Tikhonov regularization method, originally designed to attenuate the noise effects on ill-posed problems, with the aim of improving performance and stabilizing approximately controllable dynamical systems. Inspired by these works, we propose the use of a feedback controller designed using the Tikhonov method to regularize discrete-time linear systems subject to varying sampling rates. The goal is to minimize an error function, thus improving the performance of the closed loop system and reducing the possibility of instability. Illustrative examples show the effectiveness of the proposed method.
HDec-POSMDPs MRS Exploration and Fire Searching Based on IoT Cloud Robotics
Ayman El Shenawy, Khalil Mohamed, Hany Harb
Available online   doi: 10.1007/s11633-019-1187-6
Abstract PDF SpringerLink
Abstract:
The multi-robot systems (MRS) exploration and fire searching problem is an important application of mobile robots which require massive computation capability that exceeds the ability of traditional MRS′s. This paper propose a cloud-based hybrid decentralized partially observable semi-Markov decision process (HDec-POSMDPs) model. The proposed model is implemented for MRS exploration and fire searching application based on the Internet of things (IoT) cloud robotics framework. In this implementation the heavy and expensive computational tasks are offloaded to the cloud servers. The proposed model achieves a significant improvement in the computation burden of the whole task relative to a traditional MRS. The proposed model is applied to explore and search for fire objects in an unknown environment; using different sets of robots sizes. The preliminary evaluation of this implementation demonstrates that as the parallelism of computational instances increase the delay of new actuation commands which will be decreased, the mean time of task completion is decreased, the number of turns in the path from the start pose cells to the target cells is minimized and the energy consumption for each robot is reduced.
Research on End-force Output of 8-cable Driven Parallel Manipulator
Sen-Hao Hou, Xiao-Qiang Tang, Ling Cao, Zhi-Wei Cui, Hai-Ning Sun, Ying-Wei Yan
Available online   doi: 10.1007/s11633-019-1195-6
Abstract PDF SpringerLink
Abstract:
The return capsule needs to be launched to the moon and return back to earth in the third stage of the Chinese lunar exploration project. Therefore, it is necessary to perform simulations on the ground. This paper presents an 8-cable-driven parallel manipulator to achieve end-force output in a low-gravity environment. End-force output refers to the vector sum of the external force on the end-effector. A model of end-force output is established based on a kinematics model, a dynamic model, and a force analysis of an 8-cable driven parallel manipulator. To obtain end-force output in a low-gravity environment, the cable force has to be controlled to counteract gravity. In addition, a force-position mix control strategy is proposed to proactively control the cable force according to the force optimal distribution given by the closed-form force distribution method. Furthermore, a suitable choice for an end-force output is obtained by modeling the effect of cable force on end-force output. Experimental results show that the actual cable force agrees well with the calculated force distribution, indicating that it is feasible to realize end-force output in a low gravity environment.
A Practical Approach to Representation of Real-time Building Control Applications in Simulation
Azzedine Yahiaoui
Available online   doi: 10.1007/s11633-018-1131-1
Abstract PDF SpringerLink
Abstract:
Computer based automation and control systems are becoming increasingly important in smart sustainable buildings, often referred to as automated buildings (ABs), in order to automatically control, optimize and supervise a wide range of building performance applications over a network while minimizing energy consumption and associated green house gas emission. This technology generally refers to building automation and control systems (BACS) architecture. Instead of costly and time-consuming experiments, this paper focuses on development and design of a distributed dynamic simulation environment with the capability to represent BACS architecture in simulation by run-time coupling two or more different software tools over a network. This involves using distributed dynamic simulations as means to analyze the performance and enhance networked real-time control systems in ABs and improve the functions of real BACS technology. The application and capability of this new dynamic simulation environment are demonstrated by an experimental design, in this paper.
Hybrid Dynamic Neural Network and PID Control of Pneumatic Artificial Muscle Using the PSO Algorithm
Mahdi Chavoshian, Mostafa Taghizadeh, Mahmood Mazare
Available online   doi: 10.1007/s11633-019-1196-5
Abstract PDF SpringerLink
Abstract:
Pneumatic artificial muscles (PAM) have been recently considered as a prominent challenge regarding pneumatic actuators specifically for rehabilitation and medical applications. Since accomplishing accurate control of the PAM is comparatively complicated due to time-varying behavior, elasticity and ambiguous characteristics, a high performance and efficient control approach should be adopted. Besides of the mentioned challenges, limited course length is another predicament with the PAM control. In this regard, this paper proposes a new hybrid dynamic neural network (DNN) and proportional integral derivative (PID) controller for the position of the PAM. In order to enhance the proficiency of the controller, the problem under study is designed in the form of an optimization trend. Considering the potential of particle swarm optimization, it has been applied to optimally tune the PID-DNN parameters. To verify the performance of the proposed controller, it has been implemented on a real-time system and compared to a conventional sliding mode controller. Simulation and experimental results show the effectiveness of the proposed controller in tracking the reference signals in the entire course of the PAM.
Low-Latency Data Gathering with Reliability Guaranteeing in Heterogeneous Wireless Sensor Networks
Tian-Yun Shi, Jian Li, Xin-Chun Jia, Wei Bai, Zhong-Ying Wang, Dong Zhou
Available online   doi: 10.1007/s11633-017-1074-y
Abstract PDF SpringerLink
Abstract:
Composite Control of Nonlinear Singularly Perturbed Systems via Approximate Feedback Linearization
Aleksey Kabanov, Vasiliy Alchakov
Available online   doi: 10.1007/s11633-017-1076-9
Abstract PDF SpringerLink
Abstract:
Optimal Design of Fuzzy-AGC Based on PSO&RCGA to Improve Dynamic Stability of Interconnected Multi Area Power Systems
Ali Darvish Falehi
Available online   doi: 10.1007/s11633-017-1064-0
Abstract PDF SpringerLink
Abstract:
Study of performance and reliability of urethral valve driven by ultrasonic-vaporized steam
Zhen Hu, Xiao Li, Ting Guan
Available online   doi: 10.1007/s11633-016-1026-y
Abstract PDF SpringerLink
Abstract:
A Novel Self-adaptive Circuit Design Technique based on Evolvable Hardware
Jun-Bin Zhang, Jin-Yan Cai, Ya-Feng Meng, Tian-Zhen Meng
Available online   doi: 10.1007/s11633-016-1000-8
Abstract PDF SpringerLink
Abstract:
Simultaneous Identification of Process Structure, Parameter and Time-Delay Based on Non-Negative Garrote
Jian-Guo Wang, Qian-Ping Xiao, Tiao Shen, Shi-Wei Ma, Wen-Tao Rao, Yong-Jie Zhang
Available online   doi: 10.1007/s11633-015-0948-0
Abstract PDF SpringerLink
Abstract:
Energy Efficient Scheduler of Aperiodic jobs for Real-Time Embedded Systems
Hussein El Ghor, E. M. Aggoune
Available online   doi: 10.1007/s11633-016-0993-3
Abstract PDF SpringerLink
Abstract:
Energy Efficient Scheduler of Aperiodic jobs for Real-Time Embedded Systems
Design of Ethernet based data acquisition system for yaw rate and longitudinal velocity measurement in automobiles
K. Arun Venkatesh, N. Mathivanan
Available online   doi: 10.1007/s11633-016-0968-4
Abstract PDF SpringerLink
Abstract:

Display Method:          |     

Review
Adversarial Attacks and Defenses in Images, Graphs and Text: A Review
Han Xu, Yao Ma, Hao-Chen Liu, Debayan Deb, Hui Liu, Ji-Liang Tang, Anil K. Jain
2020,  vol. 17,  no. 2,   pp. 151-178 ,  doi: 10.1007/s11633-019-1211-x
Abstract PDF SpringerLink
Abstract:
Deep neural networks (DNN) have achieved unprecedented success in numerous machine learning tasks in various domains. However, the existence of adversarial examples raises our concerns in adopting deep learning to safety-critical applications. As a result, we have witnessed increasing interests in studying attack and defense mechanisms for DNN models on different data types, such as images, graphs and text. Thus, it is necessary to provide a systematic and comprehensive overview of the main threats of attacks and the success of corresponding countermeasures. In this survey, we review the state of the art algorithms for generating adversarial examples and the countermeasures against adversarial examples, for three most popular data types, including images, graphs and text.
Electronic Nose and Its Applications: A Survey
Diclehan Karakaya, Oguzhan Ulucan, Mehmet Turkan
2020,  vol. 17,  no. 2,   pp. 179-209 ,  doi: 10.1007/s11633-019-1212-9
Abstract PDF SpringerLink
Abstract:
In the last two decades, improvements in materials, sensors and machine learning technologies have led to a rapid extension of electronic nose (EN) related research topics with diverse applications. The food and beverage industry, agriculture and forestry, medicine and health-care, indoor and outdoor monitoring, military and civilian security systems are the leading fields which take great advantage from the rapidity, stability, portability and compactness of ENs. Although the EN technology provides numerous benefits, further enhancements in both hardware and software components are necessary for utilizing ENs in practice. This paper provides an extensive survey of the EN technology and its wide range of application fields, through a comprehensive analysis of algorithms proposed in the literature, while exploiting related domains with possible future suggestions for this research topic.
Research Article
Text-mining-based Fake News Detection Using Ensemble Methods
Harita Reddy, Namratha Raj, Manali Gala, Annappa Basava
2020,  vol. 17,  no. 2,   pp. 210-221 ,  doi: 10.1007/s11633-019-1216-5
Abstract PDF SpringerLink
Abstract:
Social media is a platform to express one′s views and opinions freely and has made communication easier than it was before. This also opens up an opportunity for people to spread fake news intentionally. The ease of access to a variety of news sources on the web also brings the problem of people being exposed to fake news and possibly believing such news. This makes it important for us to detect and flag such content on social media. With the current rate of news generated on social media, it is difficult to differentiate between genuine news and hoaxes without knowing the source of the news. This paper discusses approaches to detection of fake news using only the features of the text of the news, without using any other related metadata. We observe that a combination of stylometric features and text-based word vector representations through ensemble methods can predict fake news with an accuracy of up to 95.49%.
Spectral-spatial Classification of Hyperspectral Images Using Signal Subspace Identification and Edge-preserving Filter
Negin Alborzi, Fereshteh Poorahangaryan, Homayoun Beheshti
2020,  vol. 17,  no. 2,   pp. 222-232 ,  doi: 10.1007/s11633-019-1188-5
Abstract PDF SpringerLink
Abstract:
Hyperspectral images in remote sensing include hundreds of spectral bands that provide valuable information for accurately identify objects. In this paper, a new method of classifying hyperspectral images using spectral spatial information has been presented. Here, using the hyperspectral signal subspace identification (HYSIME) method which estimates the signal and noise correlation matrix and selects a subset of eigenvalues for the best representation of the signal subspace in order to minimize the mean square error, subsets from the main sample space have been extracted. After subspace extraction with the help of the HYSIME method, the edge-preserving filtering (EPF), and classification of the hyperspectral subspace using a support vector machine (SVM), results were then merged into the decision-making level using majority rule to create the spectral-spatial classifier. The simulation results showed that the spectral-spatial classifier presented leads to significant improvement in the accuracy and validity of the classification of Indiana, Pavia and Salinas hyperspectral images, such that it can classify these images with 98.79%, 98.88% and 97.31% accuracy, respectively.
Localization and Classification of Rice-grain Images Using Region Proposals-based Convolutional Neural Network
Kittinun Aukkapinyo, Suchakree Sawangwong, Parintorn Pooyoi, Worapan Kusakunniran
2020,  vol. 17,  no. 2,   pp. 233-246 ,  doi: 10.1007/s11633-019-1207-6
Abstract PDF SpringerLink
Abstract:
This paper proposes a solution to localization and classification of rice grains in an image. All existing related works rely on conventional based machine learning approaches. However, those techniques do not do well for the problem designed in this paper, due to the high similarities between different types of rice grains. The deep learning based solution is developed in the proposed solution. It contains pre-processing steps of data annotation using the watershed algorithm, auto-alignment using the major axis orientation, and image enhancement using the contrast-limited adaptive histogram equalization (CLAHE) technique. Then, the mask region-based convolutional neural networks (R-CNN) is trained to localize and classify rice grains in an input image. The performance is enhanced by using the transfer learning and the dropout regularization for overfitting prevention. The proposed method is validated using many scenarios of experiments, reported in the forms of mean average precision (mAP) and a confusion matrix. It achieves above 80% mAP for main scenarios in the experiments. It is also shown to perform outstanding, when compared to human experts.
Orientation Measurement for Objects with Planar Surface Based on Monocular Microscopic Vision
Ying Li, Xi-Long Liu, De Xu, Da-Peng Zhang
2020,  vol. 17,  no. 2,   pp. 247-256 ,  doi: 10.1007/s11633-019-1202-y
Abstract PDF SpringerLink
Abstract:
Orientation measurement of objects is vital in micro assembly. In this paper, we present a novel method based on monocular microscopic vision for 3-D orientation measurement of objects with planar surfaces. The proposed methods aim to measure the orientation of the object, which does not require calibrating the intrinsic parameters of microscopic camera. In our methods, the orientation of the object is firstly measured with analytical computation based on feature points. The results of the analytical computation are coarse because the information about feature points is not fully used. In order to improve the precision, the orientation measurement is converted into an optimization process base on the relationship between deviations in image space and in Cartesian space under microscopic vision. The results of the analytical computation are used as the initial values of the optimization process. The optimized variables are the three rotational angles of the object and the pixel equivalent coefficient. The objective of the optimization process is to minimize the coordinates differences of the feature points on the object. The precision of the orientation measurement is boosted effectively. Experimental and comparative results validate the effectiveness of the proposed methods.
Tracking Registration Algorithm for Augmented Reality Based on Template Tracking
Peng-Xia Cao, Wen-Xin Li, Wei-Ping Ma
2020,  vol. 17,  no. 2,   pp. 257-266 ,  doi: 10.1007/s11633-019-1198-3
Abstract PDF SpringerLink
Abstract:
Tracking registration is a key issue in augmented reality applications, particularly where there are no artificial identifier placed manually. In this paper, an efficient markerless tracking registration algorithm which combines the detector and the tracker is presented for the augmented reality system. We capture the target images in real scenes as template images, use the random ferns classifier for target detection and solve the problem of reinitialization after tracking registration failures due to changes in ambient lighting or occlusion of targets. Once the target has been successfully detected, the pyramid Lucas-Kanade (LK) optical flow tracker is used to track the detected target in real time to solve the problem of slow speed. The least median of squares (LMedS) method is used to adaptively calculate the homography matrix, and then the three-dimensional pose is estimated and the virtual object is rendered and registered. Experimental results demonstrate that the algorithm is more accurate, faster and more robust.
Smooth-optimal Adaptive Trajectory Tracking Using an Uncalibrated Fish-eye Camera
Zhao-Bing Kang, Wei Zou, Zheng Zhu, Hong-Xuan Ma
2020,  vol. 17,  no. 2,   pp. 267-278 ,  doi: 10.1007/s11633-019-1209-4
Abstract PDF SpringerLink
Abstract:
This paper presents a two-stage smooth-optimal trajectory tracking strategy. Different from existing methods, the optimal trajectory tracked point can be directly determined in an uncalibrated fish-eye image. In the first stage, an adaptive trajectory tracking controller is employed to drive the tracking error and the estimated error to an arbitrarily small neighborhood of zero. Afterwards, an online smooth-optimal trajectory tracking planner is proposed, which determines the tracked point that can be used to realize smooth motion control of the mobile robot. The tracked point in the uncalibrated image can be determined by minimizing a utility function that consists of both the velocity change and the sum of cross-track errors. The performance of our planner is compared with other tracked point determining methods in experiments by tracking a circular trajectory and an irregular trajectory. Experimental results show that our method has a good performance in both tracking accuracy and motion smoothness.
Modeling of a Smart Nano Force Sensor Using Finite Elements and Neural Networks
Farid Menacer, Abdelmalek Kadr, Zohir Dibi
2020,  vol. 17,  no. 2,   pp. 279-291 ,  doi: 10.1007/s11633-018-1155-6
Abstract PDF SpringerLink
Abstract:
The aim of this work is to model and analyze the behavior of a new smart nano force sensor. To do so, the carbon nanotube has been used as a suspended gate of a metal-oxide-semiconductor field-effect transistor (MOSFET). The variation of the applied force on the carbon nanotube (CNT) generates a variation of the capacity of the transistor oxide-gate and therefore the variation of the threshold voltage, which allows the MOSFET to become a capacitive nano force sensor. The sensitivity of the nano force sensor can reach 0.124 31 V/nN. This sensitivity is greater than results in the literature. We have found through this study that the response of the sensor depends strongly on the geometric and physical parameters of the CNT. From the results obtained in this study, it can be seen that the increase in the applied force increases the value of the MOSFET threshold voltage VTh. In this paper, we first used artificial neural networks to faithfully reproduce the response of the nano force sensor model. This neural model is called direct model. Then, secondly, we designed an inverse model called an intelligent sensor which allows linearization of the response of our developed force sensor.
Image Encryption Algorithm Based on Compressive Sensing and Fractional DCT via Polynomial Interpolation
Ya-Ru Liang, Zhi-Yong Xiao
2020,  vol. 17,  no. 2,   pp. 292-304 ,  doi: 10.1007/s11633-018-1159-2
Abstract PDF SpringerLink
Abstract:
Based on compressive sensing and fractional discrete cosine transform (DCT) via polynomial interpolation (PI-FrDCT), an image encryption algorithm is proposed, in which the compression and encryption of an image are accomplished simultaneously. It can keep information secret more effectively with low data transmission. Three-dimensional piecewise and nonlinear chaotic maps are employed to obtain a generating sequence and the exclusive OR (XOR) matrix, which greatly enlarge the key space of the encryption system. Unlike many other fractional transforms, the output of PI-FrDCT is real, which facilitates the storage, transmission and display of the encrypted image. Due to the introduction of a plain-image-dependent disturbance factor, the initial values and system parameters of the encryption scheme are determined by cipher keys and plain-image. Thus, the proposed encryption scheme is very sensitive to the plain-image, which makes the encryption system more secure. Experimental results demonstrate the validity and the reliability of the proposed encryption algorithm.
Hidden Markov Model Approach for Software Reliability Estimation with Logic Error
R. Bharathi, R. Selvarani
2020,  vol. 17,  no. 2,   pp. 305-320 ,  doi: 10.1007/s11633-019-1214-7
Abstract PDF SpringerLink
Abstract:
To ensure the safe operation of any software controlled critical systems, quality factors like reliability and safety are given utmost importance. In this paper, we have chosen to analyze the impact of logic error that is one of the contributors to the above factors. In view of this, we propose a novel framework based on a data driven approach known as software failure estimation with logic error (SFELE). Here, the probabilistic nature of software error is explored by observing the operation of a safety critical system by injecting logic fault. The occurrence of error, its propagations and transformations are analyzed from its inception to end of its execution cycle through the hidden Markov model (HMM) technique. We found that the proposed framework SFELE supports in labeling and quantifying the behavioral properties of selected errors in a safety critical system while traversing across its system components in addition to reliability estimation of the system. Our attempt at the design level can help the design engineers to improve their system quality in a cost-effective manner.
Correlation of Direct Piezoelectric Effect on EAPap under Ambient Factors
Li-Jie Zhao, Chang-Ping Tang, Peng Gong
2010,  vol. 7,  no. 3,   pp. 324-329, doi: 10.1007/s11633-010-0510-z
Abstract PDF SpringerLink
Feature Selection and Feature Learning for High-dimensional Batch Reinforcement Learning: A Survey
De-Rong Liu, Hong-Liang, Li Ding Wang
2015,  vol. 12,  no. 3,   pp. 229-242, doi: 10.1007/s11633-015-0893-y
Abstract PDF SpringerLink
The Effect of Interatomic Potentials on the Molecular Dynamics Simulation of Nanometric Machining
Akinjide Oluwajobi, Xun Chen
2011,  vol. 8,  no. 3,   pp. 326-332, doi: 10.1007/s11633-011-0588-y
Abstract PDF SpringerLink
Adaptive Terminal Sliding Mode Control for Rigid Robotic Manipulators
Mezghani Ben Romdhane Neila, Damak Tarak
2011,  vol. 8,  no. 2,   pp. 215-220, doi: 10.1007/s11633-011-0576-2
Abstract PDF SpringerLink
A New Method for Modelling and Simulation of the Dynamic Behaviour of the Wheel-rail contact
Arthur Anyakwo, Crinela Pislaru, Andrew Ball
2012,  vol. 9,  no. 3,   pp. 237-247, doi: 10.1007/s11633-012-0640-6
Abstract PDF SpringerLink
Adaptive Fuzzy Sliding Mode Power System Stabilizer Using Nussbaum Gain
Emira Nechadi, Mohamed Naguib Harmas, Najib Essounbouli, Abdelaziz Hamzaoui
2013,  vol. 10,  no. 4,   pp. 281-287, doi: 10.1007/s11633-013-0722-0
Abstract PDF SpringerLink
Coordination Control of Greenhouse Environmental Factors
Feng Chen, Yong-Ning Tang, Ming-Yu Shen
2011,  vol. 8,  no. 2,   pp. 147-153, doi: 10.1007/s11633-011-0567-3
Abstract PDF SpringerLink
Exponential Nonlinear Observer Based on the Differential State-dependent Riccati Equation
Hossein Beikzadeh, Hamid D. Taghirad
2012,  vol. 9,  no. 4,   pp. 358-368, doi: 10.1007/s11633-012-0656-y
Abstract PDF SpringerLink
Unknown Inputs Observer for a Class of Nonlinear Uncertain Systems: An LMI Approach
Kamel Mohamed, Mohammed Chadli, Mohamed Chaabane
2012,  vol. 9,  no. 3,   pp. 331-336, doi: 10.1007/s11633-012-0652-2
Abstract PDF SpringerLink
Second-order Sliding Mode Approaches for the Control of a Class of Underactuated Systems
Sonia Mahjoub, Faiçal Mnif, Nabil Derbel
2015,  vol. 12,  no. 2,   pp. 134-141, doi: 10.1007/s11633-015-0880-3
Abstract PDF SpringerLink
Adaptive Tracking Control of an Autonomous Underwater Vehicle
Basant Kumar Sahu, Bidyadhar Subudhi
2014,  vol. 11,  no. 3,   pp. 299-307, doi: 10.1007/s11633-014-0792-7
Abstract PDF SpringerLink
Fault Tolerant Control for Networked Control Systems with Packet Loss and Time Delay
Ming-Yue Zhao, He-Ping Liu, Zhi-Jun Li, De-Hui Sun
2011,  vol. 8,  no. 2,   pp. 244-253, doi: 10.1007/s11633-011-0579-z
Abstract PDF SpringerLink
A Method for Trust Management in Cloud Computing: Data Coloring by Cloud Watermarking
Yu-Chao Liu, Yu-Tao Ma, Hai-Su Zhang, De-Yi Li, Gui-Sheng Chen
2011,  vol. 8,  no. 3,   pp. 280-285, doi: 10.1007/s11633-011-0583-3
Abstract PDF SpringerLink
State Feedback Sliding Mode Control without Chattering by Constructing Hurwitz Matrix for AUV Movement
Huan-Yin Zhou, Kai-Zhou Liu, Xi-Sheng Feng
2011,  vol. 8,  no. 2,   pp. 262-268, doi: 10.1007/s11633-011-0581-5
Abstract PDF SpringerLink
Position Control of Electro-hydraulic Actuator System Using Fuzzy Logic Controller Optimized by Particle Swarm Optimization
Daniel M. Wonohadidjojo, Ganesh Kothapalli, Mohammed Y. Hassan
2013,  vol. 10,  no. 3,   pp. 181-193, doi: 10.1007/s11633-013-0711-3
Abstract PDF SpringerLink
Self-contained Capsubot Propulsion Mechanism
Nazmul Huda, Hong-Nian Yu, Samuel Oliver
2011,  vol. 8,  no. 3,   pp. 348-356, doi: 10.1007/s11633-011-0591-3
Abstract PDF SpringerLink
A New Sliding Function for Discrete Predictive Sliding Mode Control of Time Delay Systems
Abdennebi Nizar, Ben Mansour Houda, Nouri Ahmed Said
2013,  vol. 10,  no. 4,   pp. 288-295, doi: 10.1007/s11633-013-0723-z
Abstract PDF SpringerLink
Adaptive Backstepping Sliding Mode Trajectory Tracking Control for a Quad-rotor
Xun Gong, Zhi-Cheng Hou, Chang-Jun Zhao, Yue Bai, Yan-Tao Tian
2012,  vol. 9,  no. 5,   pp. 555-560, doi: 10.1007/s11633-012-0679-4
Abstract PDF SpringerLink
Sliding Mode Control with Disturbance Observer for Class of Nonlinear Systems
Lei-Po Liu, Zhu-Mu Fu, Xiao-Na Song
2012,  vol. 9,  no. 5,   pp. 487-491, doi: 10.1007/s11633-012-0671-z
Abstract PDF SpringerLink
Delay Dependent Robust Stability of Singular Systems with Additive Time-varying Delays
N. Chaibi, E. H. Tissir, A. Hmamed
2013,  vol. 10,  no. 1,   pp. 85-90 , doi: 10.1007/s11633-013-0700-6
Abstract PDF SpringerLink
Current Issue

2020 Vol.17 No.2

Table of Contents

ISSN 1476-8186

E-ISSN 1751-8520

CN 11-5350/TP

Editors-in-chief
Tieniu TAN, Chinese Academy of Sciences Guoping LIU, University of South Wales Huosheng HU, University of Essex
Global Visitors