[1]
|
Y. Zhao, I. Raicu, I. Foster. Scientific workflow systems for 21st century, new bottle or new wine? In Proceedings of the 2008 IEEE Congress on Services, IEEE, Washington, USA, pp. 467-471, 2008. |
[2]
|
Y. X. Zhang, H. W. Zheng, Y. H. Zhao. Knowledge discovery in astronomical data. In Proceedings of SPIE Conference, vol. 7019, 2008. |
[3]
|
K. D. Borne. Astroinformatics: a 21st century approach to astronomy. In Proceedings of ASTRO 2010: The Astronomy and Astrophysics Decadal Survey, 2009. |
[4]
|
J. M. Porter, T. Rivinius. Classical be stars. The Publications of the Astronomical Society of the Pacific, vol. 115, no. 812, pp. 1153-1170, 2003. |
[5]
|
J. Zorec, D. Briot. Critical study of the frequency of Be stars taking into account their outstanding characteristics. Astronomy and Astrophysics, vol. 318, pp. 443-460, 1997. |
[6]
|
F. J. Zickgraf. Kinematical structure of the circumstellar environments of galactic B[e]-type stars. Astronomy and Astrophysics, vol. 408, no. 1, pp. 257-285, 2003. |
[7]
|
R. W. Hanuschik, W. Hummel, E. Sutorius, O. Dietle, G. Thimm. Atlas of high-resolution emission and shell lines in Be stars. Line profiles and short-term variability. Astronomy and Astrophysics Supplement Series, vol. 116, pp. 309-358, 1996. |
[8]
|
P. Škoda, J. Vážný. Searching of new emission-line stars using the astroinformatics approach. Astronomical Data Analysis Software and Systems XXI, Astronomical Society of the Pacific Conference Series, vol.461, pp. 573, 2012. |
[9]
|
P. Jahankhani, K. Revett, V. Kodogiannis. Data mining an EEG dataset with an emphasis on dimensionality reduction. In Proceedings of the 2007 IEEE Symposium on Computational Intelligence and Data Mining, IEEE, Honolulu, HI, USA, pp. 405-412, 2007. |
[10]
|
M. Murugappan, R. Nagarajan, S. Yaacob. Combining spatial filtering and wavelet transform for classifying human emotions using EEG signals. Journal of Medical and Biological Engineering, vol. 31, no. 1, pp. 45-51, 2011. |
[11]
|
T. Li, Q. Li, S. H. Zhu, M. Ogihara. A survey on wavelet applications in data mining. SIGKDD Explorations Newsletter, vol. 4, pp. 49-68, 2002. |
[12]
|
M. Manteiga, D. Ordóñez, C. Dafonte, B. Arcay. ANNs and wavelets: A strategy for Gaia RVS Low S/N Stellar Spectra Parameterization. Publications of the Astronomical Society of the Pacific, vol. 122, no. 891, pp. 608-617, 2010. |
[13]
|
S. Mallat. A Wavelet Tour of Signal Processing: The Sparse Way, 3rd ed., San Diego: Academic Press, 2008. |
[14]
|
I. Daubechies. Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, Philadelphia, PA: Society for Industrial and Applied Mathematics, 1994. |
[15]
|
G. Kaiser. A Friendly Guide to Wavelets, Boston: Birkhäuser, 1994. |
[16]
|
Y. Meyer, D. H. Salinger. Wavelets and Operators, Number sv. 1 in Cambridge Studies in Advanced Mathematics, Cambridge: Cambridge University Press, 1995. |
[17]
|
G. Strang, T. Nguyen. Wavelets and Filter Banks, Cambridge: Wellesley-Cambridge Press, 1996. |
[18]
|
Y. G. Liu, X. S. Liang, R. H. Weisberg. Rectification of the bias in the wavelet power spectrum. Journal of Atmospheric and Oceanic Technology, vol. 24, no. 12, pp. 2093-2102, 2007. |
[19]
|
P. J. Rousseeuw. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, vol. 20, pp. 53-65, 1987. |
[20]
|
T. Li, S. Ma, M. Ogihara. Wavelet methods in data mining. Data Mining and Knowledge Discovery Handbook, O.Maimon, L. Rokach, Eds., New York: Springer, pp. 553-571, 2010. |
[21]
|
A. Cohen, I. Daubechies, J. C. Feauveau. Biorthogonal bases of compactly supported wavelets. Communications on Pure and Applied Mathematics, vol. 45, no. 5, pp. 485-560, 1992. |
[22]
|
C. Cortes, V. Vapnik. Support-vector networks, Machine Learning, vol. 20, no. 3, pp. 273-297, 1995. |
[23]
|
C. C. Chang, C. J. Lin. LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology, vol. 2, no. 3, pp. 1-27, Article 27, 2011. |
[24]
|
F. Pedregosa. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, vol. 12, pp. 2825-2830, 2011. |